Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Xiu-Ying Yang, ${ }^{\text {a }}{ }^{*}$ Yu-Qing Shang, ${ }^{\text {b }}$ Guan-Ping Yu, ${ }^{\text {b }}$ Pu-Yong Zhang, ${ }^{\text {a }}$ Wei-Hua Li ${ }^{\text {c }}$ and Bao-Rong Hou ${ }^{\text {d }}$

${ }^{\text {a College of }}$ Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, ${ }^{\text {b }}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, ${ }^{\text {c }}$ College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, People's Republic of China, and ${ }^{\mathrm{d}}$ Institute of Oceanology, Chinese Academy of Sciences, Qingdao
266071, People's Republic of China

Correspondence e-mail: qknhs@yahoo.com.cn

## Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.044$
$w R$ factor $=0.111$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## 5-[(1H-1,2,4-Yriazol-1-yl)methyl]-4-(4-fluorobenzylideneamino)-2H-1,2,4-triazole-3(4H)-thione

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FN}_{7} \mathrm{~S}$, the dihedral angles made by the plane of the thione-substituted triazole ring with the planes of the other triazole ring and the benzene ring are 71.94 (3) and $40.10(2)^{\circ}$, respectively. Inter- and intramolecular hydrogen-bond and $\pi-\pi$ stacking interactions stabilize the structure.

## Comment

Compounds containing the 1,2,4-triazole ring possess a broad pharmacological activity spectrum encompassing anti-inflammatory (Prasad et al., 1989), sedative, smooth-muscle relaxation (Gall et al., 1976), anticonvulsant (Kane et al., 1990), antituberculosis (Mir et al., 1970) and platelet-aggregation inhibitory activities (Lagorce et al., 1992). In search of better biological activity, the title compound, (I), was synthesized. We report here the crystal structure of (I).


The bond lengths and angles of the thione-substituted triazole ring and the other triazole ring (Table 1) are in agreement with the values quotes in previous reports (Li et al., 2005; Xu et al., 2005). The molecule exists in the thione tautomeric form, with an $S=$ C distance of 1.668 (2) $\AA$, which indicates substantial double-bond character (Allen et al., 1987). The planes C1-C3/N1-N3 and C6-C12/N7/F1 make angles of 71.94 (3) and $40.10(2)^{\circ}$, respectively, with the thione-substituted triazole plane C4/C5/N4-N6/S1. The crystal structure of (I) is stabilized by weak intra- and intermolecular hydrogen bonds and double $\pi-\pi$ stacking interactions. The $\pi-$ $\pi$ stacking interactions involve the thione-substituted triazole ring ( $\mathrm{C} 4 / \mathrm{C} 5 / \mathrm{N} 4-\mathrm{N} 6 / \mathrm{S} 1) R 1$ and the benzene ring (C7-C12) $R 2$. The distance between the centroids of rings $R 1$ and $R 2$ are 3.589 (8) $\AA$ at $\left(-\frac{1}{2}+x, \frac{1}{2}-y,-z\right)$ and 3.857 (4) $\AA$ at $\left(\frac{1}{2}+x, \frac{1}{2}-\right.$ $y,-z$ ).

## Experimental

A mixture of 4-amino-3-(1,2,4-triazol-1-yl)-1 H -1,2,4-triazole-5(4H)thione $(0.02 \mathrm{~mol})$ and 4 -fluorobenzaldehyde $(0.02 \mathrm{~mol})$ was refluxed

Received 15 September 2005 Accepted 19 September 2005 Online 21 September 2005
at 391 K for $15-20 \mathrm{~min}$ in glacial acetic acid to yield a yellow crystalline precipitate which was recrystallized from ethanol to afford yellow crystals of the title compound ( 5.45 g , yield $90 \%$; m.p. 497$498 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR (DMSO, 600 MHz ): $\delta 14.16(s, 1 \mathrm{H}), 10.00(s, 1 \mathrm{H})$, $8.70(s, 1 \mathrm{H}), 7.99(s, 1 \mathrm{H}), 7.41-7.99(m, 4 \mathrm{H}), 5.70(s, 2 \mathrm{H})$. IR ( KBr , $\mathrm{cm}^{-1}$ ): 3437, 3109, 2889, 1600, 1509, 1273. Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FN}_{7} \mathrm{~S}(\mathrm{Mr}=303.3)$ : C 47.52, H 3.32, N $32.32 \%$; found C 47.53, H 3.30, N $32.33 \%$. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

## Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FN}_{7} \mathrm{~S}$
$M_{r}=303.33$
Orthorhombic, Pbca
$a=7.146$ (4) $\AA$
$b=17.906$ (9) A
$c=21.697(11) \AA$
$V=2776(3) \AA^{3}$
$Z=8$
$D_{x}=1.452 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Bruker SMART CCD area detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.910, T_{\text {max }}=0.971$
14610 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 2822 reflections
$\theta=2.3-25.1^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, yellow
$0.32 \times 0.22 \times 0.10 \mathrm{~mm}$

2855 independent reflections
1673 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.064$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-8 \rightarrow 6$
$k=-17 \rightarrow 22$
$l=-27 \rightarrow 27$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.111$
$S=1.01$
2855 reflections
194 parameters
H atoms treated by a mixture of independent and constrained refinement


Figure 1
View of the title compound, (I), with displacement ellipsoids for non-H atoms drawn at the $40 \%$ probability level. H atoms are represented as spheres of arbitrary radii.


Figure 2
A packing diagram of the title compound, viewed down the $a$ axis. Hydrogen bonds are shown as dashed lines.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Gall, M., Hester, J. B., Rudzik, A. D. \& Lahti, R. A. (1976). J. Med. Chem. 19, 1057-1064.
Kane, J. M., Baron, B. M., Dudley, M. W., Sorensen, S. M., Staeger, M. A. \& Miller, F. P. (1990). J. Med. Chem. 33, 2772-2777.
Lagorce, J. F., Moulard, T. \& Raby, C. (1992). Arzneim. Forsch. 42, 314-318.
Li, W.-H., Yu, G.-P., Liu, F.-Q., Hou, B.-R. \& Yu, Z.-G. (2005). Acta Cryst. E61, o2058-o2060.
Mir, I., Siddiqui, M. T. \& Comrie, A. (1970). Tetrahedron, 26, 5235-5238.
Prasad, A. R., Ramalingam, T., Rao, A. B., Diwan, P. V. \& Sattur, P. B. (1989). Eur. J. Med. Chem. 24, 199-201.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xu, L.-Z., Yu, G.-P., Xu, F.-L. \& Li, W.-H. (2005). Acta Cryst. E61, o2061o2062.

