organic papers

Received 15 September 2005 Accepted 19 September 2005

Online 21 September 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

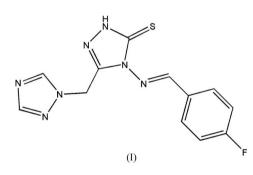
Xiu-Ying Yang,^a* Yu-Qing Shang,^b Guan-Ping Yu,^b Pu-Yong Zhang,^a Wei-Hua Li^c and Bao-Rong Hou^d

^aCollege of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, ^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, ^cCollege of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, People's Republic of China, and ^dInstitute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China

Correspondence e-mail: qknhs@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.044 wR factor = 0.111 Data-to-parameter ratio = 14.7


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-[(1*H*-1,2,4-Yriazol-1-yl)methyl]-4-(4fluorobenzylideneamino)-2*H*-1,2,4triazole-3(4*H*)-thione

In the title compound, $C_{12}H_{10}FN_7S$, the dihedral angles made by the plane of the thione-substituted triazole ring with the planes of the other triazole ring and the benzene ring are 71.94 (3) and 40.10 (2)°, respectively. Inter- and intramolecular hydrogen-bond and π - π stacking interactions stabilize the structure.

Comment

Compounds containing the 1,2,4-triazole ring possess a broad pharmacological activity spectrum encompassing anti-inflammatory (Prasad *et al.*, 1989), sedative, smooth-muscle relaxation (Gall *et al.*, 1976), anticonvulsant (Kane *et al.*, 1990), antituberculosis (Mir *et al.*, 1970) and platelet-aggregation inhibitory activities (Lagorce *et al.*, 1992). In search of better biological activity, the title compound, (I), was synthesized. We report here the crystal structure of (I).

The bond lengths and angles of the thione-substituted triazole ring and the other triazole ring (Table 1) are in agreement with the values quotes in previous reports (Li et al., 2005; Xu et al., 2005). The molecule exists in the thione tautomeric form, with an S=C distance of 1.668 (2) Å, which indicates substantial double-bond character (Allen et al., 1987). The planes C1-C3/N1-N3 and C6-C12/N7/F1 make angles of 71.94 (3) and 40.10 (2) $^{\circ}$, respectively, with the thione-substituted triazole plane C4/C5/N4-N6/S1. The crystal structure of (I) is stabilized by weak intra- and intermolecular hydrogen bonds and double π - π stacking interactions. The π - π stacking interactions involve the thione-substituted triazole ring (C4/C5/N4–N6/S1) R1 and the benzene ring (C7–C12) R2. The distance between the centroids of rings R1 and R2 are 3.589 (8) Å at $\left(-\frac{1}{2}+x,\frac{1}{2}-y,-z\right)$ and 3.857 (4) Å at $\left(\frac{1}{2}+x,\frac{1}{2}-y,-z\right)$ y, -z).

Experimental

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved A mixture of 4-amino-3-(1,2,4-triazol-1-yl)-1H-1,2,4-triazole-5(4H)-thione (0.02 mol) and 4-fluorobenzaldehyde (0.02 mol) was refluxed

organic papers

at 391 K for 15–20 min in glacial acetic acid to yield a yellow crystalline precipitate which was recrystallized from ethanol to afford yellow crystals of the title compound (5.45 g, yield 90%; m.p. 497– 498 K). ¹H NMR (DMSO, 600 MHz): δ 14.16 (*s*, 1H), 10.00 (*s*, 1H), 8.70 (*s*, 1H), 7.99 (*s*, 1H),7.41–7.99 (*m*, 4H), 5.70 (*s*, 2H). IR (KBr, cm⁻¹): 3437, 3109, 2889, 1600, 1509, 1273. Analysis calculated for C₁₂H₁₀FN₇S (Mr = 303.3): C 47.52, H 3.32, N 32.32%; found C 47.53, H 3.30, N 32.33%. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

> Mo $K\alpha$ radiation Cell parameters from 2822 reflections $\theta = 2.3-25.1^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 294 (2) K

Block, yellow

 $R_{\rm int} = 0.064$

 $\theta_{\rm max} = 26.5^{\circ}$

 $\begin{array}{l} h=-8 \rightarrow 6 \\ k=-17 \rightarrow 22 \end{array}$

 $l = -27 \rightarrow 27$

 $0.32 \times 0.22 \times 0.10 \text{ mm}$

2855 independent reflections

1673 reflections with $I > 2\sigma(I)$

Crystal data

$C_{12}H_{10}FN_7S$
$M_r = 303.33$
Orthorhombic, Pbca
a = 7.146 (4) Å
b = 17.906 (9) Å
c = 21.697 (11) Å
V = 2776 (3) Å ³
Z = 8
$D_{\rm x} = 1.452 {\rm Mg} {\rm m}^{-3}$

Data collection

Bruker SMART CCD area detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.910, T_{\max} = 0.971$ 14610 measured reflections

Refinement

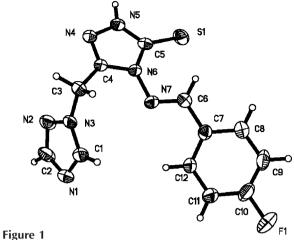
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0423P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 0.939P]
$wR(F^2) = 0.111$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
2855 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
194 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ \AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

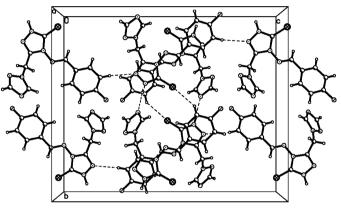
0 1 4 1			(🔥	<u>۱</u>
Nelected	geometric	parameters (A	1
Selected	Scometrie	purumeters ((11,	<i>.</i>

S1-C5	1.668 (2)	N4-N5	1.375 (3)
N2-N3	1.360 (3)	N6-N7	1.409 (3)
C6-N7-N6	115.6 (2)	N3-C3-C4	113.6 (2)

Table 2


Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N5-H5\cdots N1^{i}$	0.94 (3)	1.94 (3)	2.867 (3)	174 (3)
$C6-H6\cdots S1$	0.93	2.70	3.244 (3)	118
C9−H9···N4 ⁱⁱ	0.93	2.58	3.451 (4)	157
$C11-H11\cdots S1^{iii}$	0.93	2.76	3.519 (3)	139


Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, z; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z.

All C-bound H atoms were placed in calculated positions, with C– H = 0.93–0.97 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$. The position and isotropic displacement parameter of the N-bound H atoms were refined freely.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve

View of the title compound, (I), with displacement ellipsoids for non-H atoms drawn at the 40% probability level. H atoms are represented as spheres of arbitrary radii.

Figure 2

A packing diagram of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gall, M., Hester, J. B., Rudzik, A. D. & Lahti, R. A. (1976). J. Med. Chem. 19, 1057–1064.
- Kane, J. M., Baron, B. M., Dudley, M. W., Sorensen, S. M., Staeger, M. A. & Miller, F. P. (1990). J. Med. Chem. 33, 2772–2777.
- Lagorce, J. F., Moulard, T. & Raby, C. (1992). *Arzneim. Forsch.* **42**, 314–318. Li, W.-H., Yu, G.-P., Liu, F.-Q., Hou, B.-R. & Yu, Z.-G. (2005). *Acta Cryst.* E**61**, 02058–02060
- Mir, I., Siddiqui, M. T. & Comrie, A. (1970). *Tetrahedron*, **26**, 5235–5238.
- Prasad, A. R., Ramalingam, T., Rao, A. B., Diwan, P. V. & Sattur, P. B. (1989). Eur. J. Med. Chem. 24, 199–201.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xu, L.-Z., Yu, G.-P., Xu, F.-L. & Li, W.-H. (2005). Acta Cryst. E61, o2061– o2062.